Getting started With Oracle Dataguard

A Data Guard configuration contains a primary database and up to nine associated standby databases.

What is a Standby database ?
A standby database is a transactionally consistent copy of an Oracle production
database that is initially created from a backup copy of the primary database. Once the
standby database is created and configured, Data Guard automatically maintains the
standby database by transmitting primary database redo data to the standby system,
where the redo data is applied to the standby database.

What are the typesf standby databases?
A standby database can be one of these types: a physical standby database, a logical standby database, or a snapshot standby database. A Data Guard configuration can include any combination of these types of standby databases.

What is the use of a standby database?
Standby database can assume the role of the primary database and take over
production processing.

What is a Physical standby database and mention its benefits?
A physical standby database is an exact, block-for-block copy of a primary database.A physical standby is maintained as an exact copy through a process called Redo Apply,in which redo data received from a primary database is continuously applied to a physical standby database using the database recovery mechanisms.A physical standby database provides the following benefits:
1) Disaster recovery and high availability
2) Data protection
3) Reduction in primary database workload
4) Performance(as redo apply bypass all SQL level code layers

What is a Logical standby database?
Data Guard applies information from the archived redo log file or standby redo log file to the logical standby database by transforming the data in the log files into SQL statements and then executing the SQL statements on the logical standby database. Because the logical standby database is updated using SQL statements, it must remain open. Although the logical standby database is opened in read/write mode, its target tables for the regenerated SQL are available only for read-only operations. While those tables are being updated, they can be used simultaneously for other tasks such as reporting, summations, and queries. Tthese tasks can be optimized by creating additional indexes and materialized views on the maintained tables.

What are the benefits of a Logical standby database?
A logical standby database is ideal for high availability (HA) compared to physical standby database and provides following benefits:

1) Logical standby analyzes the redo and reconstructs logical changes to the database, it can detect and protect against certain kinds of hardware failure on the primary that could potentially be replicated through block level changes.

2)A logical standby database is open read/write while changes on the primary are being replicated and hence can be used to run reporting workloads, test new software releases and some kinds of applications on a complete and accurate copy of the primary’s data.It can host other applications and additional schemas while protecting data replicated from the primary against local changes.It can be used to assess the impact of certain kinds of physical restructuring (for example, changes to partitioning schemes). Because a logical standby identifies
user transactions and replicates only those changes while filtering out background system changes, it can efficiently replicate only transactions of interest.

3) Logical standby provides a simple solution for creating up-to-the-minute,consistent replicas of a primary database that can be used for workload distribution. As the reporting workload increases, additional logical standbys can be created with transparent load distribution without affecting the transactional throughput of the primary server.

4) A key benefit of logical standby is that significant auxiliary structures can be created to optimize the reporting workload; structures that could have a prohibitive impact on the primary’s transactional response time. A logical standby can have its data physically reorganized into a different storage type with different partitioning, have many different indexes, have on-demand refresh materialized views created and maintained, and it can be used to drive the creation of data cubes and other OLAP data views.

5) Logical standby can be used to greatly reduce downtime associated with applying patchsets and new software releases. A logical standby can be upgraded to the new release and then switched over to become the active primary. This allows full availability while the old primary is converted to a logical standby and the patchset is applied.

What is a snapshot standby database?
A snapshot standby database receives and archives, but does not apply, redo data from its primary database. Redo data received from the primary database is applied when a snapshot
standby database is converted back into a physical standby database, after discarding all local updates to the snapshot standby database.

What are the benefits of a snapshot standby database?
1)A snapshot standby database is a fully updatable standby database that provides disaster recovery and data protection benefits that are similar to those of a physical standby database

2)It provides an exact replica of a production database for development and testing purposes, while maintaining data protection at all times

3) It can be easily refreshed to contain current production data by converting to a physical standby and resynchronizing

Creating a Physical Standby Database

This post describes the steps for creating a Physical standby database. This process involves three main steps:

1) Preparing the Primary Database for Standby Database Creation
1.1) Enable Forced Logging
1.2) Configure Redo Transport Authentication
1.3) Configure the Primary Database to Receive Redo Data
1.4) Set Primary Database Initialization Parameters
1.5) Enable Archiving

2) Step-by-Step Instructions for Creating a Physical Standby Database
2.1) Create a Backup Copy of the Primary Database Datafiles
2.2) Create a Control File for the Standby Database
2.3) Prepare an Initialization Parameter File for the Standby Database
2.4) Copy Files from the Primary System to the Standby System
2.5) Copy Files from the Primary System to the Standby System
2.6) Set Up the Environment to Support the Standby Database
2.7) Start the Physical Standby Database
2.8) Verify the Physical Standby Database Is Performing Properly

3) Post-Creation Steps

1.1) Enable Forced Logging :

Place the primary database in FORCE LOGGING mode after database creation using the following SQL statement:

SQL> ALTER DATABASE FORCE LOGGING;

This statement can take a considerable amount of time to complete, because it waits for all unlogged direct write I/O to finish.

1.2) Configure Redo Transport Authentication :

Data Guard uses Oracle Net sessions to transport redo data and control messages between the members of a Data Guard configuration.

These redo transport sessions are authenticated using either the Secure Sockets Layer (SSL) protocol or a remote login password file.

SSL is used to authenticate redo transport sessions between two databases if:
1) The databases are members of the same Oracle Internet Directory (OID) enterprise domain and it allows the use of current user database links
2) The LOG_ARCHIVE_DEST_n, FAL_SERVER, and FAL_CLIENT database initialization parameters that correspond to the databases use Oracle Net connect descriptors configured for SSL
3) Each database has an Oracle wallet or supported hardware security module that contains a user certificate with a distinguished name (DN) that matches the DN in the OID entry for the database.

If the SSL authentication requirements are not met, each member of a Data Guard configuration must be configured to use a remote login password file and every physical standby database in the configuration must have an up-to-date copy of the password file from the primary database.

Note : Whenever we grant or revoke the SYSDBA or SYSOPER privilege or change the login password of a user who has these privileges, you must replace the password file at each physical or snapshot standby database in the configuration with a fresh copy of the password file from the primary database.

1.3) Configure the Primary Database to Receive Redo Data:

This task is optional.Oracle recommends that a primary database be configured to receive redo data when a Data Guard configuration is created.

By following this best practice, our primary database will be ready to quickly transition to the standby role and begin receiving redo data.

Set Primary Database Initialization Parameters :

On the primary database, we define initialization parameters that control redo transport services while the database is in the primary role.

There are additional parameters we need to add that control the receipt of the redo data and apply services when the primary database is transitioned to the standby role.

Primary Database: Primary Role Initialization Parameters (example):

DB_NAME=chicago
DB_UNIQUE_NAME=chicago
LOG_ARCHIVE_CONFIG='DG_CONFIG=(chicago,boston)' CONTROL_FILES='/arch1/chicago/control1.ctl', '/arch2/chicago/control2.ctl' LOG_ARCHIVE_DEST_1= 'LOCATION=/arch1/chicago/ VALID_FOR=(ALL_LOGFILES,ALL_ROLES) DB_UNIQUE_NAME=chicago'
LOG_ARCHIVE_DEST_2= 'SERVICE=boston ASYNC VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE) DB_UNIQUE_NAME=boston' LOG_ARCHIVE_DEST_STATE_1=ENABLE
LOG_ARCHIVE_DEST_STATE_2=ENABLE REMOTE_LOGIN_PASSWORDFILE=EXCLUSIVE
LOG_ARCHIVE_FORMAT=%t_%s_%r.arc
LOG_ARCHIVE_MAX_PROCESSES=30

These parameters control how redo transport services transmit redo data to the standby system and the archiving of redo data on the local file system.

Note : This example specifies asynchronous (ASYNC) network transmission to transmit redo data on the LOG_ARCHIVE_DEST_2 initialization parameter. These are the recommended settings and require standby redo log files.

The additional standby role initialization parameters on the primary database are given below. These parameters take effect when the primary database is transitioned to the standby role.

Primary Database: Standby Role Initialization Parameters(example) :

FAL_SERVER=boston
FAL_CLIENT=chicago
DB_FILE_NAME_CONVERT='boston','chicago'
LOG_FILE_NAME_CONVERT='/arch1/boston/','/arch1/chicago/','/arch2/boston/','/arch2/chicago/' STANDBY_FILE_MANAGEMENT=AUTO

Specifying the initialization parameters shown above sets up the primary database to resolve gaps, converts new datafile and log file path names from a new primary database, and archives the incoming redo data when this database is in the standby role. With the initialization parameters for both the primary and standby roles set as described, none of the parameters need to change after a role transition.

1.5) Enable Archiving :

If archiving is not enabled, issue the following statements to put the primary database
in ARCHIVELOG mode and enable automatic archiving:

SQL> SHUTDOWN IMMEDIATE;
SQL> STARTUP MOUNT;
SQL> ALTER DATABASE ARCHIVELOG;
SQL> ALTER DATABASE OPEN;

2) Step-by-Step Instructions for Creating a Physical Standby Database :

This section describes the tasks we perform to create a physical standby database.

2.1) Create a Backup Copy of the Primary Database Datafiles :

We can use any backup copy of the primary database to create the physical standby database, as long as we have the necessary archived redo log files to completely recover the database. Oracle recommends us to use the Recovery Manager utility (RMAN).

2.2) Create a Control File for the Standby Database :

If the backup procedure required us to shut down the primary database, issue the following SQL*Plus statement to start the primary database:

SQL> STARTUP MOUNT;

Then, create the control file for the standby database, and open the primary database to user access, as shown in the following example:

SQL> ALTER DATABASE CREATE STANDBY CONTROLFILE AS '/tmp/boston.ctl';
SQL> ALTER DATABASE OPEN;

Note: We cannot use a single control file for both the primary and standby databases.

2.3) Prepare an Initialization Parameter File for the Standby Database :

Perform the following steps to create a standby initialization parameter file.

1) Copy the primary database parameter file to the standby database.Create a text initialization parameter file (PFILE) from the server parameter file (SPFILE) used by the primary database; a text initialization parameter file can be copied to the standby location and modified. For example:

SQL> CREATE PFILE='/tmp/initboston.ora' FROM SPFILE;

2) Set initialization parameters on the physical standby database.Although most of the initialization parameter settings in the text initialization parameter file that we copied from the primary system are also appropriate for the physical standby database, some modifications need to be made.

Modifying Initialization Parameters for a Physical Standby Database(example) :

Considering above two examples, the parameters that needs to be modified are high lighted here

DB_NAME=chicago
DB_UNIQUE_NAME=boston
LOG_ARCHIVE_CONFIG='DG_CONFIG=(chicago,boston)'
CONTROL_FILES='/arch1/boston/control1.ctl', '/arch2/boston/control2.ctl'
DB_FILE_NAME_CONVERT='chicago','boston'
LOG_FILE_NAME_CONVERT=
'/arch1/chicago/','/arch1/boston/','/arch2/chicago/','/arch2/boston/'
LOG_ARCHIVE_FORMAT=log%t_%s_%r.arc
LOG_ARCHIVE_DEST_1=
'LOCATION=/arch1/boston/
VALID_FOR=(ALL_LOGFILES,ALL_ROLES)
DB_UNIQUE_NAME=boston'
LOG_ARCHIVE_DEST_2=
'SERVICE=chicago ASYNC
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)
DB_UNIQUE_NAME=chicago'
LOG_ARCHIVE_DEST_STATE_1=ENABLE
LOG_ARCHIVE_DEST_STATE_2=ENABLE
REMOTE_LOGIN_PASSWORDFILE=EXCLUSIVE
STANDBY_FILE_MANAGEMENT=AUTO
FAL_SERVER=chicago
FAL_CLIENT=boston

Ensure the COMPATIBLE initialization parameter is set to the same value on both the primary and standby databases. If the values differ, redo transport services may be unable to transmit redo data from the primary database to the standby databases.

In a Data Guard configuration, COMPATIBLE must be set to a minimum of 9.2.0.1.0.However, if you want to take advantage of new Oracle Database 11g features, set the COMPATIBLE parameter to 11.0.0.

It is always a good practice to use the SHOW PARAMETERS command to verify no other parameters need to be changed.

Note : Review the initialization parameter file for additional parameters that may need to be modified. For example, we may need to modify the dump destination parameters if the directory location on the standby database is different from those specified on the primary database.

2.4) Copy Files from the Primary System to the Standby System :

Use an operating system copy utility to copy the following binary files (created in the above steps)from the primary system to the standby system:

1) Backup datafiles
2) Standby control file
3) Initialization parameter file

2.5) Set Up the Environment to Support the Standby Database :

Perform the following steps to create a Windows-based service, create a password file, set up the Oracle Net environment, and create a SPFILE.

1) Create a Windows-based service.
If the standby database will be hosted on a Windows system, use the ORADIM utility to create a Windows service. For example:

WINNT> oradim –NEW –SID boston –STARTMODE manual

2) Copy the remote login password file from the primary database system to the standby database system
If the primary database has a remote login password file, copy it to the appropriate directory on the physical standby database system. Note that the password file must be re-copied each time the SYSDBA or SYSOPER privilege is granted or revoked and whenever the login password of a user with these privileges is changed.This step is optional if operating system authentication is used for administrative users and if SSL is used for redo transport authentication.

3) Configure listeners for the primary and standby databases
On both the primary and standby sites, use Oracle Net Manager to configure a listener for the respective databases.To restart the listeners (to pick up the new definitions), enter the following LSNRCTL utility commands on both the primary and standby systems:
% lsnrctl stop
% lsnrctl start

4) Create Oracle Net service names
On both the primary and standby systems, use Oracle Net Manager to create a network service name for the primary and standby databases that will be used by redo transport services.

The Oracle Net service name must resolve to a connect descriptor that uses the same protocol, host address, port, and service that you specified when you configured the listeners for the primary and standby databases. The connect descriptor must also specify that a dedicated server be used.

5) Create a server parameter file for the standby database
On an idle standby database, use the SQL CREATE statement to create a server parameter file for the standby database from the text initialization parameter file that was edited in step 2.3.

SQL> CREATE SPFILE FROM PFILE='initboston.ora';

6) Copy the primary database encryption wallet to the standby database system
If the primary database has a database encryption wallet, copy it to the standby database system and configure the standby database to use this wallet.The database encryption wallet must be copied from the primary database system to each standby database system whenever
the master encryption key is updated.Encrypted data in a standby database cannot be accessed unless the standby database is configured to point to a database encryption wallet or hardware security module that contains the current master encryption key from the primary database.

2.6) Start the Physical Standby Database :

Perform the following steps to start the physical standby database and Redo Apply.

1) Start the physical standby database : On the standby database, issue the following SQL statement to start and mount thedatabase:

SQL> STARTUP MOUNT;

2) Prepare the Standby Database to Receive Redo Data : Prepare the standby database to receive and archive redo data from the primary database.

3) Create an Online Redo Log on the Standby Database : Although this step is optional, Oracle recommends that an online redo log be created when a standby database is created. By following this best practice, a standby database will be ready to quickly transition to the primary database role.The size and number of redo log groups in the online redo log of a standby database
should be chosen so that the standby database performs well if it transitions to the
primary role.

4) Start Redo Apply : On the standby database, issue the following command to start Redo Apply:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE USING CURRENT LOGFILE DISCONNECT FROM SESSION;

The statement includes the DISCONNECT FROM SESSION option so that Redo Apply
runs in a background session.The statement also includes the USING CURRENT LOGFILE clause so that redo can be applied as soon as it has been received.

2.7) Verify the Physical Standby Database Is Performing Properly :

Once we create the physical standby database and set up redo transport services, we may want to verify database modifications are being successfully transmitted from the primary database to the standby database.

To see that redo data is being received on the standby database, we should first identify the existing archived redo log files on the standby database, force a log switch and archive a few online redo log files on the primary database, and then check the standby database again.

The following steps show how to perform these tasks.

1) Identify the existing archived redo log files.On the standby database, query the V$ARCHIVED_LOG view to identify existing files in the archived redo log. For example:

SQL> SELECT SEQUENCE#, FIRST_TIME, NEXT_TIME
2 FROM V$ARCHIVED_LOG ORDER BY SEQUENCE#;
SEQUENCE# FIRST_TIME NEXT_TIME
---------- ------------------ ------------------
8 11-JUL-07 17:50:45 11-JUL-07 17:50:53
9 11-JUL-07 17:50:53 11-JUL-07 17:50:58
10 11-JUL-07 17:50:58 11-JUL-07 17:51:03
3 rows selected.

2) Force a log switch to archive the current online redo log file.On the primary database, issue the ALTER SYSTEM SWITCH LOGFILE statement to force a log switch and archive the current online redo log file group:

SQL> ALTER SYSTEM SWITCH LOGFILE;

3) Verify the new redo data was archived on the standby database.On the standby database, query the V$ARCHIVED_LOG view to verify the redo data was received and archived on the standby database:

SQL> SELECT SEQUENCE#, FIRST_TIME, NEXT_TIME
2> FROM V$ARCHIVED_LOG ORDER BY SEQUENCE#;
SEQUENCE# FIRST_TIME NEXT_TIME
---------- ------------------ ------------------
8 11-JUL-07 17:50:45 11-JUL-07 17:50:53
9 11-JUL-07 17:50:53 11-JUL-07 17:50:58
10 11-JUL-07 17:50:58 11-JUL-07 17:51:03
11 11-JUL-07 17:51:03 11-JUL-07 18:34:11
4 rows selected.

The archived redo log files are now available to be applied to the physical standby database.

4) Verify new archived redo log files were applied.On the standby database, query the V$ARCHIVED_LOG view to verify the archived redo log files were applied.

SQL> SELECT SEQUENCE#,APPLIED FROM V$ARCHIVED_LOG
2 ORDER BY SEQUENCE#;
SEQUENCE# APP
--------- ---
8 YES
9 YES
10 YES
11 YES
4 rows selected.

3) Post-Creation Steps :
At this point, the physical standby database is running and can provide the maximum
performance level of data protection. The following list describes additional preparations we can take on the physical standby database:
1)Upgrade the data protection mode : The Data Guard configuration is initially set up in the maximum performance mode (the default)
2) Enable Flashback Database : Flashback Database removes the need to re-create the primary database after a failover. Flashback Database enables us to return a database to its state at a time in the recent past much faster than traditional point-in-time recovery, because it does not require restoring datafiles from backup nor the extensive application of redo data. You can enable Flashback Database on the primary database, the standby database, or both.

Dataguard Protection Modes

This post describes the dataguard protection modes.Three protection modes available with dataguard are:

1) Maximum Availability
2) Maximum Performance
3) Maximum Protection

Data Guard Protection Modes :
A synchronized standby database is meant to be one that meets the minimum requirements of the configured data protection mode and that does not have a redo gap.

A redo gap occurs whenever redo transmission is interrupted. When redo transmission resumes, redo transport services automatically detects the redo gap and resolves it by sending the missing redo to the destination.

Maximum Availability :

This protection mode provides the highest level of data protection that is possible without compromising the availability of a primary database.

Transactions do not commit until all redo data needed to recover those transactions has been written to the online redo log and to at least one synchronized standby database. If the primary
database cannot write its redo stream to at least one synchronized standby database, it
effectively switches to maximum performance mode to preserve primary database availability and operates in that mode until it is again able to write its redo stream to a synchronized standby database.

This mode ensures that no data loss will occur if the primary database fails, but only if a second fault does not prevent a complete set of redo data from being sent from the primary database to at least one standby database.

Maximum Performance :

This protection mode provides the highest level of data protection that is possible without affecting the performance of a primary database.

This is accomplished by allowing transactions to commit as soon as all redo data generated by those transactions has been written to the online log.

Redo data is also written to one or more standby databases, but this is done asynchronously with respect to transaction commitment, so primary database performance is unaffected by delays in writing redo data to the standby database(s).

This protection mode offers slightly less data protection than maximum availability mode and has minimal impact on primary database performance.

This is the default protection mode.

Maximum Protection :

This protection mode ensures that zero data loss occurs if a primary database fails. To
provide this level of protection, the redo data needed to recover a transaction must be written to both the online redo log and to at least one synchronized standby database before the transaction commits.

To ensure that data loss cannot occur, the primary database will shut down, rather than continue processing transactions, if it cannot write its redo stream to at least one synchronized standby database.

Because this data protection mode prioritizes data protection over primary database availability, Oracle recommends that a minimum of two standby databases be used to protect a primary database that runs in maximum protection mode to prevent a single standby database failure from causing the primary database to shut down.

Setting the Data Protection Mode of a Primary Database :

Perform the following steps to change the data protection mode of a primary database:

1) Select a data protection mode that meets your availability, performance and data protection requirements.The available modes are Maximum availability, maximum protection, maximun performance

2) Verify that redo transport is configured to at least one standby database The value of the LOG_ARCHIVE_DEST_n database initialization parameter that corresponds to the standby database must include the redo transport attributes listed here for the data protection mode that you are moving to:

Maximum Availability Maximum Performance Maximum Protection
AFFIRM NOAFFIRM AFFIRM
SYNC ASYNC SYNC
DB_UNIQUE_NAME DB_UNIQUE_NAME DB_UNIQUE_NAME

If the primary database has more than one standby database, only one of those standby databases must use the redo transport settings listed above.The standby database must also have a standby redo log

3) Verify that the DB_UNIQUE_NAME database initialization parameter has been set to a unique name on the primary and standby database.

For example, if the DB_UNIQUE_NAME parameter has not been defined on either database, the following SQL statements might be used to assign a unique name to each database.

Execute this SQL statement on the primary database:

SQL> ALTER SYSTEM SET DB_UNIQUE_NAME='CHICAGO' SCOPE=SPFILE;

Execute this SQL statement on the standby database:

SQL> ALTER SYSTEM SET DB_UNIQUE_NAME='BOSTON' SCOPE=SPFILE;

4) Verify that the LOG_ARCHIVE_CONFIG database initialization parameter has been defined on the primary and standby database and that its value includes a DG_CONFIG list that includes the DB_UNIQUE_NAME of the primary and standby database.

For example, if the LOG_ARCHIVE_CONFIG parameter has not been defined on either database, the following SQL statement could be executed on each database to configure the LOG_ARCHIVE_CONFIG parameter:

SQL> ALTER SYSTEM SET
2> LOG_ARCHIVE_CONFIG='DG_CONFIG=(CHICAGO,BOSTON)';

5) Shut down the primary database and restart it in mounted mode if the protection mode is being set to Maximum Protection or being changed from Maximum Performance to Maximum Availability. If the primary database is an Oracle Real Applications Cluster, shut down all of the instances and then start and mount a single instance.

SQL> SHUTDOWN IMMEDIATE;
SQL> STARTUP MOUNT;

6) Set the data protection mode.Execute the following SQL statement on the primary database:

SQL> ALTER DATABASE
2> SET STANDBY DATABASE TO MAXIMIZE {AVAILABILITY PERFORMANCE PROTECTION};

If the primary database is an Oracle Real Applications Cluster, any instances stopped
in Step 5 now can be restarted

7) Open the primary database.If the database was restarted in Step 5, open the database:

SQL> ALTER DATABASE OPEN;

8) Confirm that the primary database is operating mode.Perform the following query on the primary database the new protection mode:

SQL> SELECT PROTECTION_MODE FROM V$DATABASE;
Redo Transport Services

This post is on Redo Transport Services.It describes how to configure and monitor Oracle redo transport services.We cover the following sections in this post:

1) Introduction to Redo Transport Services
2) Configuring Redo Transport Services
3) Monitoring Redo Transport Services
4) Tuning Redo Transport

Introduction to Redo Transport Services :
Redo transport services performs the automated transfer of redo data between Oracle databases. The following redo transport destinations are supported:

1) Oracle Data Guard standby databases
2) Archive Log repository : This destination type is used for temporary offsite storage of archived redo log files. An archive log repository consists of an Oracle database instance and a
physical standby control file. An archive log repository does not contain datafiles,so it cannot support role transitions.The procedure used to create an archive log repository is identical to the procedure used to create a physical standby database, except for the copying of datafiles
3) Oracle Streams downstream capture databases
4) Oracle Change Data Capture staging databases : An Oracle database can send redo data to up to nine redo transport destinations. Each redo transport destination is individually configured to receive redo data via one of two redo transport modes:
Synchronous : The synchronous redo transport mode transmits redo data synchronously with
respect to transaction commitment. A transaction cannot commit until all redo generated by that transaction has been successfully sent to every enabled redo transport destination that uses the synchronous redo transport mode.This transport mode is used by the Maximum Protection and Maximum Availability data protection modes as described in previous post
Asynchronous : The asynchronous redo transport mode transmits redo data asynchronously with respect to transaction commitment. A transaction can commit without waiting for the redo generated by that transaction to be successfully sent to any redo transport destination that uses the asynchronous redo transport mode.This transport mode is used by the Maximum Performance data protection mode as described in previous post.
Configuring Redo Transport Services :
This section describes how to configure redo transport services.This covers the following topics:

1) Redo Transport Security
2) Configuring an Oracle Database to Send Redo Data
3) Configuring an Oracle Database to Receive Redo Data
Redo Transport Security :
Redo transport uses Oracle Net sessions to transport redo data. These redo transport sessions are authenticated using either the Secure Socket Layer (SSL) protocol or a remote login password file.

Redo Transport Authentication Using SSL :
Secure Sockets Layer (SSL) is an industry standard protocol for securing network connections. SSL uses RSA public key cryptography and symmetric key cryptography to provide authentication, encryption, and data integrity. SSL is automatically used for redo transport authentication between two Oracle databases if:

1) The databases are members of the same Oracle Internet Directory (OID) enterprise domain and that domain allows the use of current user database links.
2) The LOG_ARCHIVE_DEST_n, FAL_SERVER, and FAL_CLIENT database initialization parameters that correspond to the databases use Oracle Net connect descriptors configured for SSL.

Each database has an Oracle wallet or a supported hardware security module that contains a user certificate with a distinguished name (DN) that matches the DN in the OID entry for the database.

Redo Transport Authentication Using a Password File :

If the SSL authentication requirements are not met, each database must use a remote login password file.

In a Data Guard configuration, all physical and snapshot standby databases must use a copy of the password file from the primary database, and that copy must be refreshed whenever the SYSOPER or SYSDBA privilege is granted or revoked, and after the password of any user with these privileges is changed.

When a password file is used for redo transport authentication, the password of the user account used for redo transport authentication is compared between the database initiating a redo transport session and the target database. The password must be the same at both databases to create a redo transport session.

By default, the password of the SYS user is used to authenticate redo transport sessions when a password file is used. The REDO_TRANSPORT_USER database initialization parameter can be used to select a different user password for redo transport authentication by setting this parameter to the name of any user who has been granted the SYSOPER privilege. For administrative ease, Oracle recommends that the REDO_TRANSPORT_USER parameter be set to the same value on the redo source database and at each redo transport destination.

Configuring an Oracle Database to Send Redo Data :

The LOG_ARCHIVE_DEST_n database initialization parameter (where n is an integer from 1 to 10) is used to specify the location of a local archive redo log or to specify a redo transport destination .

There is a LOG_ARCHIVE_DEST_STATE_n database initialization parameter (where n
is an integer from 1 to 10) that corresponds to each LOG_ARCHIVE_DEST_n parameter. This parameter is used to enable or disable the corresponding redo destination. The valid values that can be assigned to this parameter :

ENABLE - Redo transport services can transmit redo data to this destination. This is the default.
DEFER - Redo transport services will not transmit redo data to this destination.
ALTERNATE - This destination will become enabled if communication to its associated destination fails.

A redo transport destination is configured by setting the LOG_ARCHIVE_DEST_n parameter to a character string that includes one or more attributes.

The SERVICE attribute, which is a mandatory attribute for a redo transport destination, must be the first attribute specified in the attribute list. The SERVICE attribute is used to specify the Oracle Net service name used to connect to a redo transport destination.

The SYNC attribute is used to specify that the synchronous redo transport mode be used to send redo data to a redo transport destination.

The ASYNC attribute is used to specify that the asynchronous redo transport mode be used to send redo data to a redo transport destination. The asynchronous redo transport mode will be used if neither the SYNC nor the ASYNC attribute is specified.

The NET_TIMEOUT attribute is used to specify how long the LGWR process will block
waiting for an acknowledgement that redo data has been successfully received by a destination that uses the synchronous redo transport mode. If an acknowledgement is not received within NET_TIMEOUT seconds, the redo transport connection is terminated and an error is logged.

The AFFIRM attribute is used to specify that redo received from a redo source database
is not acknowledged until it has been written to the standby redo log.

The NOAFFIRM attribute is used to specify that received redo is acknowledged without waiting for received redo to be written to the standby redo log.

The DB_UNIQUE_NAME attribute is used to specify the DB_UNIQUE_NAME of a redo
transport destination. The DB_UNIQUE_NAME attribute must be specified if the LOG_ ARCHIVE_CONFIG database initialization parameter has been defined and its value includes a DG_CONFIG list.

The VALID_FOR attribute is used to specify when redo transport services transmits redo data to a redo transport destination. Oracle recommends that the VALID_FOR attribute be specified for each redo transport destination at every site in a Data Guard configuration so that redo transport services will continue to send redo data to all standby databases after a role transition, regardless of which standby database assumes the primary role.

The REOPEN attribute is used to specify the minimum number of seconds between automatic reconnect attempts to a redo transport destination that is inactive because of a previous error.

The COMPRESSION attribute is used to specify that redo data is transmitted to a redo transport destination in compressed form when resolving redo data gaps. Redo transport compression can significantly improve redo gap resolution time when network links with low bandwidth and high latency are used for redo transport.

The following example uses all of the LOG_ARCHIVE_DEST_n attributes described in this section. Two redo transport destinations are defined and enabled. The first destination uses the asynchronous redo transport mode. The second destination uses the synchronous redo transport mode with a 30-second timeout. A DB_UNIQUE_NAME has been specified for both destinations, as has the use of compression when resolving redo gaps. If a redo transport fault occurs at either destination, redo transport will attempt to reconnect to that destination, but not more frequently than once every 60 seconds.

DB_UNIQUE_NAME=BOSTON
LOG_ARCHIVE_CONFIG='DG_CONFIG=(BOSTON,CHICAGO,DENVER)'
LOG_ARCHIVE_DEST_2='SERVICE=CHICAGO
ASYNC
NOAFFIRM
VALID_FOR=(ONLINE_LOGFILE,PRIMARY_ROLE)
REOPEN=60
COMPRESSION=ENABLE
DB_UNIQUE_NAME=CHICAGO'
LOG_ARCHIVE_DEST_STATE_2='ENABLE'
LOG_ARCHIVE_DEST_3='SERVICE=DENVER
SYNC
AFFIRM
NET_TIMEOUT=30
VALID_FOR=(ONLINE_LOGFILE,PRIMARY_ROLE)
REOPEN=60
COMPRESSION=ENABLE
DB_UNIQUE_NAME=DENVER'
LOG_ARCHIVE_DEST_STATE_3='ENABLE'

Viewing Attributes With V$ARCHIVE_DEST :

The V$ARCHIVE_DEST view can be queried to see the current settings and status for
each redo transport destination.

Configuring an Oracle Database to Receive Redo Data :

This section describes how to configure a redo transport destination to receive and to
archive redo data from a redo source database. The following topics are discussed:
1) Creating and Managing a Standby Redo Log
2) Configuring Standby Redo Log Archival

Creating and Managing a Standby Redo Log :

The synchronous and asynchronous redo transport modes require that a redo transport destination have a standby redo log. A standby redo log is used to store redo received from another Oracle database. Standby redo logs are structurally identical to redo logs, and are created and managed using the same SQL statements used to create and manage redo logs.

Redo received from another Oracle database via redo transport is written to the current standby redo log group by a RFS background process.

When a log switch occurs on the redo source database, incoming redo is then written to the next standby redo log group, and the previously used standby redo log group is archived by an
ARCn background process.

The process of sequentially filling and then archiving redo log file groups at a redo source database is mirrored at each redo transport destination by the sequential filling and archiving of standby redo log groups.

Each standby redo log file must be at least as large as the largest redo log file in the redo log of the redo source database. For administrative ease, Oracle recommends that all redo log files in the redo log at the redo source database and the standby redo log at a redo transport destination be of the same size.

The standby redo log must have at least one more redo log group than the redo log on the redo source database.

Perform the following query on a redo source database to determine the size of each log file and the number of log groups in the redo log:

SQL> SELECT GROUP#, BYTES FROM V$LOG;

Perform the following query on a redo destination database to determine the size of each log file and the number of log groups in the standby redo log:

SQL> SELECT GROUP#, BYTES FROM V$STANDBY_LOG;

Oracle recommends that a standby redo log be created on the primary database in a Data Guard configuration so that it is immediately ready to receive redo data following a switchover to the standby role.

The ALTER DATABASE ADD STANDBY LOGFILE SQL statement is used to create a standby redo log and to add standby redo log groups to an existing standby redo log.

For example, assume that the redo log on the redo source database has two redo log groups and that each of those contain one 500 MB redo log file. In this case, the standby redo log should have at least 3 standby redo log groups to satisfy the requirement that a standby redo log must have at least one more redo log group than the redo log at the redo source database.

The following SQL statements might be used to create a standby redo log that is appropriate for the previous scenario:

ALTER DATABASE ADD STANDBY LOGFILE
('/oracle/dbs/slog1.rdo') SIZE 500M;
ALTER DATABASE ADD STANDBY LOGFILE
('/oracle/dbs/slog2.rdo') SIZE 500M;
ALTER DATABASE ADD STANDBY LOGFILE
('/oracle/dbs/slog3.rdo') SIZE 500M;

Note : Whenever a redo log group is added to the primary database in an Oracle Data Guard configuration, a standby redo log group must also be added to the standby redo log at each standby database in the configuration that uses the synchronous redo transport mode. If this is not done, a primary database that is running in the maximum protection data protection mode may shut down, and a primary database that is running in the maximum availability data protection mode may shift to the maximum performance data protection mode.

Configuring Standby Redo Log Archival :

1) Standby Redo Log Archival to a Flash Recovery Area :
1. Set the LOCATION attribute of a LOG_ARCHIVE_DEST_n parameter to USE_DB_
RECOVERY_FILE_DEST.
2. Set the VALID_FOR attribute of the same LOG_ARCHIVE_DEST_n parameter to a
value that allows standby redo log archival.

The following are some sample parameter values that might be used to configure a physical standby database to archive its standby redo log to the flash recovery area:
LOG_ARCHIVE_DEST_2 = 'LOCATION=USE_DB_RECOVERY_FILE_DEST
VALID_FOR=(STANDBY_LOGFILE,STANDBY_ROLE)'
LOG_ARCHIVE_DEST_STATE_2=ENABLE

Oracle recommends the use of a flash recovery area, because it simplifies the management of archived redo log files.

Standby Redo Log Archival to a Local FIle System Location :

Take the following steps to set up standby redo log archival to a local file system location:
1. Set the LOCATION attribute of a LOG_ARCHIVE_DEST_n parameter to a valid
pathname.
2. Set the VALID_FOR attribute of the same LOG_ARCHIVE_DEST_n parameter to a
value that allows standby redo log archival.

The following are some sample parameter values that might be used to configure a
physical standby database to archive its standby redo log to a local file system
location:

LOG_ARCHIVE_DEST_2 = 'LOCATION = /disk2/archive
VALID_FOR=(STANDBY_LOGFILE,STANDBY_ROLE)'
LOG_ARCHIVE_DEST_STATE_2=ENABLE

Monitoring Redo Transport Services :

This section discusses the following topics:
1) Monitoring Redo Transport Status
2) Monitoring Synchronous Redo Transport Response Time
3) Redo Gap Detection and Resolution
4)Redo Transport Services Wait Events

Monitoring Redo Transport Status :

This section describes the steps used to monitor redo transport status on a redo source database.

1) Determine the most recently archived redo log file. Perform the following query on the redo source database to determine the most recently archived sequence number for each thread:

SQL> SELECT MAX(SEQUENCE#), THREAD# FROM V$ARCHIVED_LOG GROUP BY THREAD#;

2) Determine the most recently archived redo log file at each redo transport destination. Perform the following query on the redo source database to determine the most recently archived redo log file at each redo transport destination:

SQL> SELECT DESTINATION, STATUS, ARCHIVED_THREAD#, ARCHIVED_SEQ#
2> FROM V$ARCHIVE_DEST_STATUS
3> WHERE STATUS <> 'DEFERRED' AND STATUS <> 'INACTIVE';
DESTINATION STATUS ARCHIVED_THREAD# ARCHIVED_SEQ#
------------------ ------ ---------------- -------------
/private1/prmy/lad VALID 1 947
standby1 VALID 1 947

The most recently archived redo log file should be the same for each destination. If it is not, a status other than VALID may identify an error encountered during the archival operation to that destination

3) Find out if archived redo log files have been received at a redo transport destination. A query can be performed at a redo source database to find out if an archived redo log file has been received at a particular redo transport destination. Each destination has an ID number ssociated with it. You can query the DEST_ID column of the V$ARCHIVE_DEST view on a database to identify each destination's ID number.

Assume that destination 1 points to the local archived redo log and that destination 2 points to a redo transport destination. Perform the following query at the redo source database to find out if any log files are missing at the redo transport destination:

SQL> SELECT LOCAL.THREAD#, LOCAL.SEQUENCE# FROM
2> (SELECT THREAD#, SEQUENCE# FROM V$ARCHIVED_LOG WHERE DEST_ID=1)
3> LOCAL WHERE
4> LOCAL.SEQUENCE# NOT IN
5> (SELECT SEQUENCE# FROM V$ARCHIVED_LOG WHERE DEST_ID=2 AND
6> THREAD# = LOCAL.THREAD#);
THREAD# SEQUENCE#

4) Trace the progression of redo transmitted to a redo transport destination. Set the LOG_ARCHIVE_TRACE database initialization parameter at a redo source database and at each redo transport destination to trace redo transport progress.

Monitoring Synchronous Redo Transport Response Time:

The V$REDO_DEST_RESP_HISTOGRAM view contains response time data for each redo transport destination. This response time data is maintained for redo transport messages sent via the synchronous redo transport mode.

The data for each destination consists of a series of rows, with one row for each response time. To simplify record keeping, response times are rounded up to the nearest whole second for response times less than 300 seconds. Response times greater than 300 seconds are round up to 600, 1200, 2400, 4800, or 9600 seconds.

Each row contains four columns: FREQUENCY, DURATION, DEST_ID, and TIME.

The FREQUENCY column contains the number of times that a given response time has been observed. The DURATION column corresponds to the response time. The DEST_ ID column identifies the destination. The TIME column contains a timestamp taken when the row was last updated.

The response time data in this view is useful for identifying synchronous redo transport mode performance issues that can affect transaction throughput on a redo source database. It is also useful for tuning the NET_TIMEOUT attribute.

The next three examples show example queries for destination 2, which corresponds to the LOG_ARCHIVE_DEST_2 parameter. To display response time data for a different destination, simply change the DEST_ID in the query.

Perform the following query on a redo source database to display the response time
histogram for destination 2:

SQL> SELECT FREQUENCY, DURATION FROM
2> V$REDO_DEST_RESP_HISTOGRAM WHERE DEST_ID=2 AND FREQUENCY>1;

Perform the following query on a redo source database to display the fastest response
time for destination 2:

SQL> SELECT max(DURATION) FROM V$REDO_DEST_RESP_HISTOGRAM
2> WHERE DEST_ID=2 AND FREQUENCY>1;

Perform the following query on a redo source database to display the slowest response
time for destination 2:

SQL> SELECT min(DURATION) FROM V$REDO_DEST_RESP_HISTOGRAM
2> WHERE DEST_ID=2 AND FREQUENCY>1;

Note: The highest observed response time for a destination cannot exceed the highest specified NET_TIMEOUT value specified for that destination, because synchronous redo transport mode sessions are terminated if a redo transport destination does not respond to a redo transport message within NET_TIMEOUT seconds.

Redo Gap Detection and Resolution :

A redo gap occurs whenever redo transmission is interrupted. When redo transmission resumes, redo transport services automatically detects the redo gap and resolves it by sending the missing redo to the destination.

The time needed to resolve a redo gap is directly proportional to the size of the gap and inversely proportional to the effective throughput of the network link between the redo source database and the redo transport destination. Redo transport services has two options that may reduce redo gap resolution time when low performance network links are used:

1) Redo Transport Compression
The COMPRESSION attribute of the LOG_ARCHIVE_DEST_n parameter can be
used to specify that redo transport compression be used to compress the redo sent
to resolve a redo gap.

2) Parallel Redo Transport Network Sessions
The MAX_CONNECTIONS attribute of the LOG_ARCHIVE_DEST_n parameter can
be used to specify that more than one network session be used to send the redo
needed to resolve a redo gap.

Manual Gap Resolution :

In some situations, gap resolution cannot be performed automatically and it must be performed manually. For example, redo gap resolution must be performed manually on a logical standby database if the primary database is unavailable.

Perform the following query at the physical standby database to determine if there is redo gap on a physical standby database:

SQL> SELECT * FROM V$ARCHIVE_GAP;
THREAD# LOW_SEQUENCE# HIGH_SEQUENCE#
----------- ------------- --------------
1 7 10

The output from the previous example indicates that the physical standby database is currently missing log files from sequence 7 to sequence 10 for thread 1.

Perform the following query on the primary database to locate the archived redo log files on the primary database (assuming the local archive destination on the primary database is LOG_ARCHIVE_DEST_1):

SQL> SELECT NAME FROM V$ARCHIVED_LOG WHERE THREAD#=1 AND
2> DEST_ID=1 AND SEQUENCE# BETWEEN 7 AND 10;
NAME
--
/primary/thread1_dest/arcr_1_7.arc
/primary/thread1_dest/arcr_1_8.arc
/primary/thread1_dest/arcr_1_9.arc

Note: This query may return consecutive sequences for a given thread. In that case, there is no actual gap, but the associated thread was disabled and enabled within the time period of generating these two archived logs. The query also does not identify the gap that may exist at the tail end for a given thread. For instance, if the primary database has generated archived logs up to sequence 100 for thread 1, and the latest archived log that the logical standby database has received for the given thread is the one associated with sequence 77, this query will not return any rows, although we have a gap for the archived logs associated with sequences 78 to 100.

Copy these log files to the physical standby database and register them using the

ALTER DATABASE REGISTER LOGFILE.

For example:
SQL> ALTER DATABASE REGISTER LOGFILE
'/physical_standby1/thread1_dest/arcr_1_7.arc';
SQL> ALTER DATABASE REGISTER LOGFILE
'/physical_standby1/thread1_dest/arcr_1_8.arc';
SQL> ALTER DATABASE REGISTER LOGFILE
'/physical_standby1/thread1_dest/arcr_1_9.arc';

To determine if there is a redo gap on a logical standby database, query the DBA_
LOGSTDBY_LOG view on the logical standby database.

For example, the following query indicates there is a gap in the sequence of archived redo log files because it displays two files for THREAD 1 on the logical standby database. (If there are no gaps, the query will show only one file for each thread.) The output shows that the highest
registered file is sequence number 10, but there is a gap at the file shown as sequence number 6:
SQL> COLUM COLUMN FILE_NAME FORMAT a55
SQL> SELECT THREAD#, SEQUENCE#, FILE_NAME FROM
DBA_LOGSTDBY_LOG L
2> WHERE NEXT_CHANGE# NOT IN
3> (SELECT FIRST_CHANGE# FROM DBA_LOGSTDBY_LOG WHERE L.THREAD# = THREAD#)
4> ORDER BY THREAD#, SEQUENCE#;
THREAD# SEQUENCE# FILE_NAME
---------- ---------- ---
1 6 /disk1/oracle/dbs/log-1292880008_6.arc
1 10 /disk1/oracle/dbs/log-1292880008_10.arc
Copy the missing log files, with sequence numbers 7, 8, and 9, to the logical standby system and register them using the ALTER DATABASE REGISTER LOGICAL LOGFILE statement.

For example:

SQL> ALTER DATABASE REGISTER LOGICAL LOGFILE '/disk1/oracle/dbs/log-1292880008_7.arc';
SQL> ALTER DATABASE REGISTER LOGICAL LOGFILE '/disk1/oracle/dbs/log-1292880008_8.arc';
SQL> ALTER DATABASE REGISTER LOGICAL LOGFILE '/disk1/oracle/dbs/log-1292880008_9.arc';

Redo Transport Services Wait Events :
Oracle wait events are used to track redo transport wait time on a redo source database. These wait events are found in the V$SYSTEM_EVENT dynamic performance view.

For a complete list of the Oracle wait events used by redo transport, see the Oracle Data Guard Redo Transport and Network Best Practices white paper on the Oracle Maximum Availability Architecture (MAA) home page at:
http://otn.oracle.com/deploy/availability/htdocs/maa.htm

Tuning Redo Transport :
The Oracle Data Guard Redo Transport and Network Configuration Best Practices white paper describes how to optimize redo transport for best performance. This paper is available on the Oracle Maximum Availability Architecture (MAA) home page at:
http://otn.oracle.com/deploy/availability/htdocs/maa.htm

Apply Services

This post is on Apply Services and describes how redo data is applied to a standby database.This includes the following sections:

1) Introduction to Apply Services
2) Apply Services Configuration Options
3) Applying Redo Data to Physical Standby Databases
4) Applying Redo Data to Logical Standby Databases

Introduction to Apply Services :

Apply services automatically apply redo to standby databases to maintain synchronization with the primary database and allow transactionally consistent access to the data.By default, apply services wait for the full archived redo log file to arrive on the standby database before applying it to the standby database. However, if we use a standby redo log, you can enable real-time apply, which allows Data Guard to recover redo data from the current standby redo log file as it is being filled.

Apply services use the following methods to maintain physical and logical standby databases:

1) Redo apply (physical standby databases only)
Uses media recovery to keep the primary and physical standby databases
synchronized.

2) SQL Apply (logical standby databases only)
Reconstitutes SQL statements from the redo received from the primary database
and executes the SQL statements against the logical standby database.

Logical standby databases can be opened in read/write mode, but the target tables being maintained by the logical standby database are opened in read-only mode for reporting purposes (providing the database guard was set appropriately).

SQL Apply enables us to use the logical standby database for reporting activities,even while SQL statements are being applied.

Apply Services Configuration Options :

This section contains the following topics:

1) Using Real-Time Apply to Apply Redo Data Immediately
2) Specifying a Time Delay for the Application of Archived Redo Log Files

Using Real-Time Apply to Apply Redo Data Immediately :

If the real-time apply feature is enabled, apply services can apply redo data as it is received, without waiting for the current standby redo log file to be archived. This results in faster switchover and failover times because the standby redo log files have been applied already to the standby database by the time the failover or switchover begins.

Use the ALTER DATABASE statement to enable the real-time apply feature, as follows:

1) For physical standby databases, issue the ALTER DATABASE RECOVER MANAGED
STANDBY DATABASE USING CURRENT LOGFILE statement.
2) For logical standby databases, issue the ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE statement.

Standby redo log files are required to use real-time apply.

As the remote file server (RFS) process writes the redo data to standby redo log files on the standby database, apply services can recover redo from standby redo log files as they are being filled.

Specifying a Time Delay for the Application of Archived Redo Log Files :

In some cases, we may want to create a time lag between the time when redo data is received from the primary site and when it is applied to the standby database.

We can specify a time interval (in minutes) to protect against the application of corrupted or
erroneous data to the standby database.

When we set a DELAY interval, it does not delay the transport of the redo data to the standby database. Instead, the time lag we specify begins when the redo data is completely archived at the standby destination.

Specifying a Time Delay :

We can set a time delay on primary and standby databases using the DELAY=minutes attribute of the LOG_ARCHIVE_DEST_n initialization parameter to delay applying archived redo log files to the standby database.

By default, there is no time delay. If we specify the DELAY attribute without specifying a value, then the default delay interval is 30 minutes.

Canceling a Time Delay :

We can cancel a specified delay interval as follows:

For physical standby databases, use the NODELAY keyword of the RECOVER
MANAGED STANDBY DATABASE clause:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE NODELAY;

For logical standby databases, specify the following SQL statement:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY NODELAY;

These commands result in apply services immediately beginning to apply archived redo log files to the standby database, before the time interval expires.

Using Flashback Database as an Alternative to Setting a Time Delay :

As an alternative to setting an apply delay, we can use Flashback Database to recover from the application of corrupted or erroneous data to the standby database.Flashback Database can quickly and easily flash back a standby database to an arbitrary point in time.

Applying Redo Data to Physical Standby Databases :

By default, the redo data is applied from archived redo log files. When performing Redo Apply, a physical standby database can use the real-time apply feature to apply redo directly from the standby redo log files as they are being written by the RFS process. Note that apply services cannot apply redo data to a physical standby database when it is opened in read-only mode.

This section contains the following topics:
1) Starting Redo Apply
2) Stopping Redo Apply
3) Monitoring Redo Apply on Physical Standby Databases

Starting Redo Apply :

To start apply services on a physical standby database, ensure the physical standby database is started and mounted and then start Redo Apply using the SQL ALTER DATABASE RECOVER MANAGED STANDBY DATABASE statement.

We can specify that Redo Apply runs as a foreground session or as a background process, and enable it with real-time apply.

To start Redo Apply in the foreground, issue the following SQL statement:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE;

If we start a foreground session, control is not returned to the command prompt
until recovery is canceled by another session.

To start Redo Apply in the background, include the DISCONNECT keyword on the SQL statement. For example:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE DISCONNECT;

This statement starts a detached server process and immediately returns control to the user. While the managed recovery process is performing recovery in the background, the foreground process that issued the RECOVER statement can continue performing other tasks. This does not disconnect the current SQL session.

To start real-time apply, include the USING CURRENT LOGFILE clause on the
SQL statement. For example:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE USING CURRENT LOGFILE;

Stopping Redo Apply :To stop Redo Apply, issue the following SQL statement in another window:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;

Monitoring Redo Apply on Physical Standby Databases :

To monitor the status of apply services on a physical standby database,we can use OEM (Oracle Enterprise Manager). Also views can be used for this purpose.

Applying Redo Data to Logical Standby Databases :

SQL Apply converts the data from the archived redo log or standby redo log in to SQL statements and then executes these SQL statements on the logical standby database.

Because the logical standby database remains open, tables that are maintained can be
used simultaneously for other tasks such as reporting, summations, and queries.

This section contains the following topics:

1) Starting SQL Apply
2) Stopping SQL Apply on a Logical Standby Database
3) Monitoring SQL Apply on Logical Standby Databases

Starting SQL Apply :

To start SQL Apply, start the logical standby database and issue the following statement:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY;

To start real-time apply on the logical standby database to immediately apply redo data from the standby redo log files on the logical standby database, include the IMMEDIATE keyword as shown in the following statement:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;

Stopping SQL Apply on a Logical Standby Database :

To stop SQL Apply, issue the following statement on the logical standby database:

SQL> ALTER DATABASE STOP LOGICAL STANDBY APPLY;

When we issue this statement, SQL Apply waits until it has committed all complete transactions that were in the process of being applied. Thus, this command may not stop the SQL Apply processes immediately.

Monitoring SQL Apply on Logical Standby Databases :

To monitor SQL Apply, we also monitor the standby database using Oracle Enterprise Manager.

Using RMAN With Dataguard

This post describes how to use Oracle Recovery Manager to create a standby database.

Overview of Standby Database Creation with RMAN :
This section explains the purpose and basic concepts involved in standby database creation with RMAN.

Purpose of Standby Database Creation with RMAN :
We can use either manual techniques or the RMAN DUPLICATE command to create a standby database from backups of our primary database. Creating a standby database with RMAN has the following advantages over manual techniques:
1) RMAN can create a standby database by copying the files currently in use by the primary database. No backups are required.
2) RMAN can create a standby database by restoring backups of the primary database to the standby site. Thus, the primary database is not affected during the creation of the standby database.
3) RMAN automates renaming of files, including Oracle Managed Files (OMF) and directory structures.
4) RMAN restores archived redo log files from backups and performs media recovery so that the standby and primary databases are synchronized.

Basic Concepts of Standby Creation with RMAN :

The procedure for creating a standby database with RMAN is almost the same as for creating a duplicate database.

To create a standby database with the DUPLICATE command we must connect as target to the primary database and specify the FOR STANDBY option.

We cannot connect to a standby database and create an additional standby database.

RMAN creates the standby database by restoring and mounting a control file. RMAN can use
an existing backup of the primary database control file, so we do not need to create a
control file backup especially for the standby database.

A standby database, unlike a duplicate database created by DUPLICATE without the FOR STANDBY OPTION, does not get a new DBID. Thus, we should not register the standby database with your recovery catalog.

Active Database and Backup-Based Duplication :

We must choose between active and backup-based duplication.

If we specify FROM ACTIVE DATABASE, then RMAN copies the datafiles directly from the primary database to the standby database. The primary database must be mounted or open.

If you not specify FROM ACTIVE DATABASE, then RMAN performs backup-based duplication. RMAN restores backups of the primary datafiles to the standby database.All backups and archived redo log files needed for creating and recovering the standby database must be accessible by the server session on the standby host.

RMAN restores the most recent datafiles unless we execute the SET UNTIL command.

DB_UNIQUE_NAME Values in an RMAN Environment :

A standby database, unlike a duplicate database created by DUPLICATE without the FOR STANDBY option, does not get a new DBID.

When using RMAN in a Data Guard environment, we should always connect it to a recovery catalog. The recovery catalog can store the metadata for all primary and standby databases in the environment.

We should not explicitly register the standby database in the recovery catalog.

A database in a Data Guard environment is uniquely identified by means of the DB_UNIQUE_NAME parameter in the initialization parameter file. The DB_UNIQUE_NAME
must be unique across all the databases with the same DBID for RMAN to work
correctly in a Data Guard environment.

Recovery of a Standby Database :

By default, RMAN does not recover the standby database after creating it. RMAN leaves the standby database mounted, but does not place the standby database in manual or managed recovery mode. RMAN disconnects and does not perform media recovery of the standby database.
If we want RMAN to recover the standby database after creating it, then the standby
control file must be usable for the recovery. The following conditions must be met:
1) The end recovery time of the standby database must be greater than or equal to
the checkpoint SCN of the standby control file.
2) An archived redo log file containing the checkpoint SCN of the standby control file must be available at the standby site for recovery.

One way to ensure these conditions are met is to issue the ALTER SYSTEM ARCHIVE LOG CURRENT statement after backing up the control file on the primary database.

This statement archives the online redo log files of the primary database. Then, either back
up the most recent archived redo log file with RMAN or move the archived redo log
file to the standby site.

Use the DORECOVER option of the DUPLICATE command to specify that RMAN
should recover the standby database.

RMAN performs the following steps after creating the standby database files:

1. RMAN begins media recovery. If recovery requires archived redo log files, and if the log files are not already on disk, then RMAN attempts to restore backups.
2. RMAN recovers the standby database to the specified time, system change number (SCN), or log file sequence number, or to the latest archived redo log file generated if none of the preceding are specified.
3. RMAN leaves the standby database mounted after media recovery is complete,but does not place the standby database in manual or managed recovery mode.

Standby Database Redo Log Files :

RMAN automatically creates the standby redo log files on the standby database. After the log files are created, the standby database maintains and archives them according to the normal rules for log files.

If we use backup-based duplication, then the only option when naming the standby redo log files on the standby database is the file names for the log files, as specified in the standby control file.

If the log file names on the standby must be different from the primary file names, then one option is to specify file names for the standby redo logs by setting LOG_FILE_NAME_CONVERT in the standby initialization parameter file.

Note the following restrictions when specifying file names for the standby redo log files on the standby database:
1) We must use the LOG_FILE_NAME_CONVERT parameter to name the standby redo log files if the primary and standby databases use different naming conventions for the log files.
2) We cannot use the SET NEWNAME or CONFIGURE AUXNAME commands to rename
the standby redo log files.
3) We cannot use the LOGFILE clause of the DUPLICATE command to specify file names for the standby redo log files.
4) If we want the standby redo log file names on the standby database to be the same as the primary redo log file names, then you must specify the NOFILENAMECHECK clause of the DUPLICATE command. Otherwise, RMAN signals an error even if the standby database is created in a different host.

Password Files for the Standby Database :

If we are using active database duplication, then RMAN always copies the password file to the standby host because the password file on the standby database must be an exact copy of the password file on the target database. In this case, the PASSWORD FILE clause is not necessary. RMAN overwrites any existing password file for the auxiliary instance.

With backup-based duplication we must copy the password file used on the primary to the standby, for Data Guard to ship logs.

Using the DUPLICATE Command to Create a Standby Database :

The procedure for creating a standby database is basically identical to the duplication procedure
as shown here .

Creating a Standby Database with Active Database Duplication :

To create a standby database from files that are active in the primary database, specify both FOR STANDBY and FROM ACTIVE DATABASE. Optionally, specify the DORECOVER option to recover the database after standby creation.

This scenario assumes that the standby host and primary database host have the same directory structure.To create a standby database from active database files:
1. Prepare the auxiliary database instance .As we are using active database duplication, we must create a password file for the auxiliary instance and establish Oracle Net connectivity. This is a
temporary password file as it will be overwritten during the duplicate operation.
2. Decide how to provide names for the standby control files, datafiles, online redo logs, and tempfiles. In this scenario, the standby database files will be named the same as the primary
database files.
3. Start and configure RMAN .
4. Execute the DUPLICATE command.

The following example illustrates how to use DUPLICATE for active duplication.

This example requires the NOFILENAMECHECK option because the primary database files have the same names as the standby database files. The SET clauses for SPFILE are required for log shipping to work properly. The db_unique_name must be set to ensure that the catalog and Data Guard can identify this database as being different from the primary.

DUPLICATE TARGET DATABASE
FOR STANDBY
FROM ACTIVE DATABASE
DORECOVER
SPFILE
SET "db_unique_name"="foou" COMMENT ''Is a duplicate''
SET LOG_ARCHIVE_DEST_2="service=inst3 ASYNC REGISTER
VALID_FOR=(online_logfile,primary_role)"
SET FAL_CLIENT="inst3" COMMENT "Is standby"
SET FAL_SERVER="inst1" COMMENT "Is primary"
NOFILENAMECHECK;

RMAN automatically copies the server parameter file to the standby host, starts the auxiliary instance with the server parameter file, restores a backup control file,and copies all necessary database files and archived redo logs over the network to the standby host. RMAN recovers the standby database, but does not place it in manual or managed recovery mode.

Creating a Standby Database with Backup-Based Duplication :

To create a standby database from backups, specify FOR STANDBY but do not specify FROM ACTIVE DATABASE. Optionally, specify the DORECOVER option to recover the database after standby creation.This scenario assumes that the standby host and primary database host have the same directory structure.

To create a standby database from backups:
1. Make database backups and archived redo logs available to the auxiliary instance on the duplicate host
2. Prepare the auxiliary database instance
3. Decide how to provide names for the standby control files, datafiles, online redo logs, and tempfiles.In this scenario, the standby database files will be named the same as the primary
database files.
4. Start and configure RMAN
5. Execute the DUPLICATE command.

The following example illustrates how to use DUPLICATE for backup-based duplication. This example requires the NOFILENAMECHECK option because the primary database files have the same names as the standby database files.
DUPLICATE TARGET DATABASE
FOR STANDBY
DORECOVER
SPFILE
SET "db_unique_name"="foou" COMMENT ''Is a duplicate''
SET LOG_ARCHIVE_DEST_2="service=inst3 ASYNC REGISTER
VALID_FOR=(online_logfile,primary_role)"
SET FAL_CLIENT="inst3" COMMENT "Is standby"
SET FAL_SERVER="inst1" COMMENT "Is primary"
NOFILENAMECHECK;

RMAN automatically copies the server parameter file to the standby host, starts the auxiliary instance with the server parameter file, and restores all necessary database files and archived redo logs to the standby host. RMAN recovers the standby database, but does not place it in manual or managed recovery mode.

